

配布先:文部科学記者会、科学記者会、名古屋教育記者会

2023年9月20日

報道機関 各位

マクロファージへのコレステロール蓄積が肝線維化を促進する: 超分子ポリロタキサンを用いた 非アルコール性脂肪肝炎治療法の開発へ

【ポイント】

- ・NASH の肝臓においてコレステロール結晶が形成され、これを貪食したマクロファージにコレステロールが蓄積することを見出しました。
- ・脂肪肝の肝臓から単離した培養マクロファージにコレステロールを貪食させると、 NASH に特徴的な活性化が誘導され、線維化促進形質を獲得することを明らかにしま した。
- ・独自に合成した超分子ポリロタキサンは、マクロファージ細胞内のコレステロールを排泄し、NASHマウスモデルにおける肝線維化を抑制しました。

概念図

【要旨】

名古屋大学環境医学研究所/医学系研究科の菅波孝祥 教授、伊藤美智子 特任准教授、東京医科歯科大学生体材料工学研究所の田村篤志 准教授を中心とする研究グループは、非アルコール性脂肪肝炎(NASH)において、マクロファージ(注 1)へのコレステロール蓄積が肝線維化(注 2)を促進するという新たな病態メカニズムを明らかにしました。世界的な肥満の増加に伴って 4 人に 1 人が脂肪肝を発症し、そのうち 10~30%が炎症と線維化を特徴とする NASHに進展します。近年、NASHは肝細胞がんの主要な原因疾患として注目されていますが、未だに有効な治療法は存在しません。予後良好の脂肪肝と異なり、慢性進行性の NASHではコレステロールに代表される細胞障害性脂質が蓄積しますが、従来は主に肝細胞に注目して研究が行われてきました。今回、研究グループは、NASHマウスモデルやヒト NASH サンプルの解析から、死細胞の処理にあたるマクロファージにコレステロールが蓄積することで NASHに特徴的な活性化が誘導され、肝線維化が進行ことを明らかにしました。さらに、独自の超分子ポリロタキサンを合成し、マクロファージ内に蓄積したコレステロールを排泄させることで、NASH マウスモデルにおける肝線維化を抑制することに成功しました(概念図)。

本研究は、国立研究開発法人日本医療研究開発機構・革新的先端研究開発支援事業(AMED-CREST)「生体組織の適応・修復機構の時空間的解析による生命現象の理解と医療技術シーズの創出」(研究代表者:京都大学医学研究科 柳田素子 教授)、橋渡し研究プログラム「脂質ストレスを制御する超分子ポリロタキサンを用いたNASH治療戦略の開発」(研究代表者:菅波孝祥 教授)、日本学術振興会・科学研究費助成事業、ならびに公益財団法人住友電エグループ社会貢献基金などの支援を受けて行われたもので、その研究成果は、国際科学誌 Journal of Experimental Medicine 誌に掲載されました(2023年9月19日付電子版)。

1. 背景

世界的な肥満の増加に伴って、肝臓における合併症の非アルコール性脂肪肝炎(NASH)が注目を集めています。わが国においても、健康診断受診例の約3割に脂

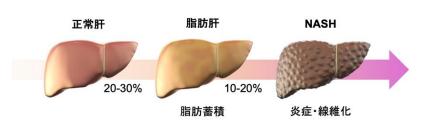


図1. 肝臓への脂肪蓄積を背景に進展するNASH

肪肝を認め、そのうち約 10~30%が炎症と線維化を特徴とする NASH に進展します (図 1)。近年、ウイルス性肝炎に対する有効な治療法が開発されたため、未だ治療薬のない NASH が近い将来、肝細胞がんの原疾患の第 1 位となることが確実視されています。 予後良好の単純性脂肪肝では主に中性脂肪が蓄積しますが、NASH ではコレステロール (注 3)のような細胞障害性の脂質が増加することで肝細胞死を惹起し、NASH 病態を悪

化させると考えられています。一方、肝細胞のコレステロール合成を強力に抑制するスタチン製剤は、高脂血症治療薬として広く使用されていますが、NASH に対する治療効果は明確ではありません。このように、肝臓におけるコレステロール蓄積がどのようにNASH 病態を悪化させるのかは、十分に解明されていませんでした。

NASH の病理組織学的特徴として、肝細胞死の増加が指摘されています。研究グループは既に、独自の NASH マウスモデルを駆使して、細胞死に陥った肝細胞の周囲にマクロファージが集積するユニークな組織像を同定し、ここを起点として炎症や線維化が進行することで NASH を発症することを明らかにしました(文献 1-4)。このマクロファージはCD11c というタンパクを細胞膜上に発現し、NASH に特徴的な活性化状態を呈しますが、マクロファージが形質転換するメカニズムは不明でした。

2. 研究成果

■NASH におけるコレステロール結晶の形成とマクロファージへのコレステロール蓄積

NASH マウスモデルの肝臓を電子顕微鏡や 偏光顕微鏡で観察したところ、細胞死に陥った 肝細胞の内部にコレステロール結晶が形成され ることを見出しました(図 2)。また、死細胞(肝 細胞)の周囲に集積する CD11c 陽性マクロフ アージでは、コレステロール含量の増加とともに リソソーム(注 4)障害を呈しました。ヒトの NASH 肝においても、同様の所見が認められま した。

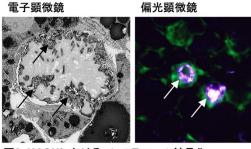


図2. NASHにおけるコレステロール結晶化 死細胞にコレステロール結晶が認められ、周囲をマクロファージが取り囲んでいる。 矢印:コレステロール結晶

■細胞内コレステロールの排泄を促進する超分子ポリロタキサン(注 5)

環状オリゴ糖のβシクロデキストリン(βCD)は、遺伝性にコレステロールが蓄積する難病・ニーマンピック病 C型に対する臨床試験が進行しています。βCDはコレステロールを包接して細胞外に排泄する一方、細胞内に取り込まれにくく、細胞毒性も強い点も指摘されています。そこで研究チームは、多数のβCDを組み合わせて超分子ポリロタキサンを合成し、βCDをリソソームの酸性環境において酸分解性ストッパーが外れ、超分子ポリロタキサンからβCDが遊離し、コレステロールを補足します(図3)。研究チームでは、様々なタイプの

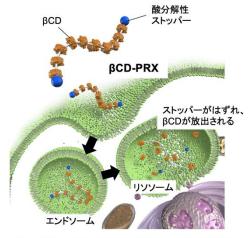
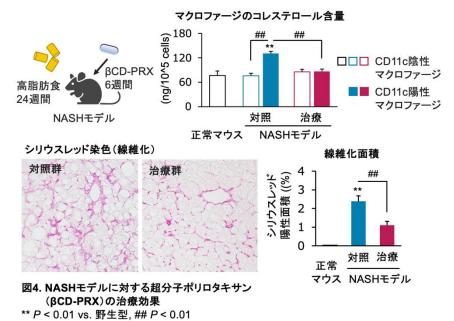



図3. 超分子ポリロタキサン(βCD-PRX)の構造 と作用メカニズム

超分子ポリロタキサンから、NASH 治療に最も適したものを同定しました。

■NASH の病態形成におけるマクロファージ内コレステロール蓄積の意義

NASH マウスモデルに対して超分子ポリロタキサンを 6 週間持続的に皮下投与したとこを 1 に皮下投与したとこ度でかりませんが、CD11c 陽性マケール含量が選択のコレスに低がです。場雑化促進形質が いました はい ひきしました (図 4)。

■マクロファージ内コレステロール蓄積が線維化促進に働く分子メカニズム

培養マクロファージを用いて検討したところ、コレステロールがリソソームに過剰蓄積することでリソソーム障害が惹起され、TFE 転写因子ファミリーや、さらに下流の転写因子 Egr1 を介して線維化促進因子の発現が誘導されることを見出しました。

3. 今後の展開

本研究により、①NASH では死細胞を処理するマクロファージにコレステロールが蓄積すること、②リソソーム障害が線維化促進因子の発現を誘導すること、③超分子ポリロタキサンでマクロファージ内コレステロールを減少させると肝線維化が改善することが明

らかになりました(図 5)。近年 の解析技術の発展に伴って、 NASH の病態形成に深く関与 するマクロファージの特徴が、 するマクロファージの特徴が、本 研究はコレステロール代謝の による線維化促進形質の による線維化促進形質の としました。 といても活動性のステロール結晶が認められるため、 といては高率にコレステロール結晶が認められるため、 といては高が認められるため、 といても 分子ポリロタキサンの NASH 治療への応用が期待されま す。

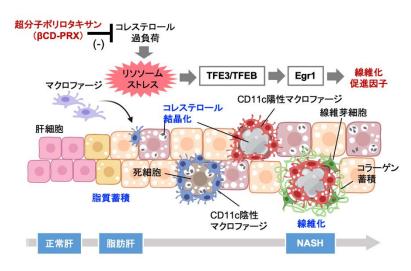


図5. NASH病態形成におけるマクロファージへのコレステロール蓄積と 線維化促進機構

4. 用語説明

- 注 1 マクロファージ:白血球の一種で、体内に侵入した病原体や異物を貪食・処理することで、我々の身体を感染や外傷から守る役割を担っています。また、死んだ細胞や その破片などを処理することで、身体の状態(恒常性)を維持する働きもあります。
- 注 2 肝線維化:様々な臓器・疾患において炎症が慢性化すると、最終的にコラーゲン等の線維性物質が増加する線維化という状態になります。例えば NASH において、 肝線維化は肝がん発症の誘因になるため、肝線維化に対する治療戦略の開発が望まれています。
- 注 3 コレステロール: 細胞膜の主要な構成成分の一つであり、様々な細胞機能にも深く関与します。通常、細胞内では脂肪酸と結合したコレステロールエステルの形で脂肪滴内に貯蔵されます。従来、動脈硬化症の血管壁においてコレステロール結晶の形成が報告されていましたが、近年、NASH においてもコレステロール結晶の形成が指摘されています。
- 注 4 リソソーム:細胞内小器官の一つで、内部が酸性化されており、多様な分解酵素を含んでいます。細胞内に取り込んだ様々な物質や細胞内の構造物を分解して、再利用します。受容体を介して取り込まれたコレステロールを含むリポタンパクや、エンドサイトーシスによって取り込まれたコレステロール結晶もリソソームにおいて分解を受けます。
- 注 5 超分子ポリロタキサン:多数のβCD を線状高分子でつなぎ、その両端に酸分解性ストッパーを配置した高分子化合物です。エンドサイトーシスによって細胞内に取り込まれ、リソソームの酸性環境下でストッパーが外れ、βCD を放出します。超分子ポリロタキサンは、βCD をリソソームに選択的に送達する drug delivery system(DDS)と捉えることができます。

5. 参考文献

- 1. Kanamori Y, Tanaka M, Itoh M, Ochi K, Ito A, Hidaka I, Sakaida I, Ogawa Y, Suganami T. Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH. **iScience** 24: 102032, 2021.
- 2. Itoh M, Suganami T, Kato H, Kanai S, Shirakawa I, Sakai T, Goto T, Asakawa M, Hidaka I, Sakugawa H, Ohnishi K, Komohara K, Asano K, Sakaida I, Tanaka M, Ogawa Y. CD11c-positive resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of non-alcoholic steatohepatitis. JCI Insight 2: e92902, 2017.
- 3. Itoh M, Kato H, Suganami T, Konuma K, Marumoto Y, Terai S, Sakugawa H, Kanai S, Hamaguchi M, Fukaishi T, Aoe S, Akiyoshi K, Komohara Y, Takeya M, Sakaida I, Ogawa Y. Hepatic crown-like

- structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans. **PLoS** One 8: e82163, 2013.
- 4. Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, Terai S, Sakaida I, Ogawa Y. Melanocortin-4 receptor-deficient mice as a novel mouse model of non-alcoholic steatohepatitis. Am. J. Pathol. 179: 2454-2463, 2011.

6. 発表論文

掲雑誌名:Journal of Experimental Medicine

論文タイトル:Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH

著者·所属:

Michiko Itoh¹⁻⁴*[†], Atsushi Tamura^{5†}, Sayaka Kanai^{2,3}, Miyako Tanaka^{1,6,7}, Yohei Kanamori¹, Ibuki Shirakawa¹, Ayaka Ito^{1,6}, Yasuyoshi Oka⁸, Isao Hidaka⁹, Taro Takami⁹, Yasushi Honda¹⁰, Mitsuyo Maeda^{11,12}, Yasuyuki Saito¹³, Yoji Murata¹³, Takashi Matozaki¹⁴, Atsushi Nakajima¹⁰,

Takayoshi Suganami^{1,6,7,16}*

† equally contributed, * co-correspondence

Yosky Kataoka^{11,12}, Tomoo Ogi⁸, Yoshihiro Ogawa^{1,15},

¹Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; ²Department of Bioelectronics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; ³Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan; ⁴Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; ⁵Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan; ⁶Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan; ⁷Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan; 8Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; ⁹Department of Gastroenterology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; ¹⁰Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; ¹¹Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe,

Japan; ¹²Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; ¹³Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; ¹⁴Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan; ¹⁵Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ¹⁶Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.

DOI:10.1084/jem.20220681

【研究者連絡先】

東海国立大学機構 名古屋大学 環境医学研究所 分子代謝医学分野 / 大学院医学系研究科 免疫代謝学

教授 菅波 孝祥(すがなみ たかよし)

TEL:052-789-3881 FAX:052-789-5047

E-mail: suganami@riem.nagoya-u.ac.jp

【報道連絡先】

東海国立大学機構 名古屋大学医学部・医学系研究科 総務課総務係

TEL:052-744-2804 FAX:052-744-2785

E-mail: <u>iga-sous@t.mail.nagoya-u.ac.jp</u>